
EVENTUALLY AREALLY MEAN p-VALENT 
FUNCTIONS 

BY 

DOUGLAS MICHAEL CAMPBELL 

ABSTRACT 

Theorems concerning areally mean p-valent functions are extended to eventu- 
ally areally mean p-valent functions. In particular, suppose f(z) = ~ , ~  o a, zn 
is eventually areally mean p-valent in the unit disc, b, e are positive inte- 
gers, a => max {p -- 1, 0}. If[ a n I =< Cn~ tbr all n = b m +  c, ra ---- 1, 2 . . . . .  
then ] a n [ < C' n ~ for all n. This is a marked extension of results due to Goluzin 

i I 

and to Hayman. 

1. Introduction 

Areally mean p-valent functions (hereafter abbreviated as ampv)are  known to 

possess many of the same coefficient and growth properties of p-valent functions. 

At the same time ampv functions have the disadvantage of being unduly sensi- 

tive to zeros since they may have no more than [p] zeros where [p] denotes the 

integer part of p. 

To remove this unnecessary sensitivity to zeros and yet retain the growth 

properties and coefficient estimates of ampv functions we introduce and investigate 

the class of eventually areally mean p-valent functions (eampv). Since an ampv 

function may be eventually areally mean q-valent (eamqv) with q considerably 

smaller than p, this theory makes possible even more precise information about 

ampv functions in certain situations. In addition the theory provides a means of  

obtaining knowledge concerning functions which are not amqv for any q. 

In particular, we show that if f (z) is eampv then M ( r , f )  = 0(1 - r )  -2p and 

the set of points where the order o f f  is positive is countable and satisfies ~Ece(() 

-< 2p. If  f (z) is eampv and equal to 
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N - I  

~, ajz j "4- ~ aN+jkZ N+Jk, 
j =0  j = o  

then M(r,f) = 0(1 - r )  -2p/k. Furthermore, if f ( z ) r  Ua is eampv then M(r,f) 

= 0 ( 1 -  r) -~ implies ]a,J = O(n ~-~) for all ct> 3/2. Other interesting coef- 

ficient results are obtained by placing various controls on the rate of growth of the 

area o f f (  I z J < r) over a fixed disc centered at the origin in the image plane. 

2. Preliminary remarks 

If f (z)  is analytic in the unit disc D = {I z J <  1}, let n(w) be the number of  

roots in D of the equation f (z)  = w, counted according to their multiplicity. As is 

standard notation we let 

1 fo 2x (2.1) p(R) = p(R, D,f) = - ~  n(R exp (iO))dO 

(2.2) h(R) = p(R) - p 

fRIP(P)d(p2) (2.3) W(R, Ro) = = pR 2 + H(n, no) = H*(R) 

(2.4) W(R,O) = W(R) = pR 2 + H(R). 

A function f (z)  analytic in D is said to be 

(i) p-valent if and only if n(w) < p, for all w e C, 

(ii) eventually p-valent if and only if there is an R o such that n(w) < p for all 

JwJ >= Ro, 
(iii) areally mean p-valent if and only if W~R) < pR 2 for all R > 0, 

(iv) (Spencer) eventually areally mean p-valent if and only if there is an R 0 

such that W(R) < pR 2 for all R -> Ro, 

(v) eventually areally mean p-valent if and only if there is an Ro such that 

W(R, R o) <- pR 2 for all R > 0. 

Note that an eampv function with Ro = 0 is ampv and any ampv function is 

campy with respect to any Ro > 0. After the completion of  the original work in 

this paper, which was based on [6], my attention was directed to Spencer's 

original papers [10], [11]. One sees immediately that Spencer's eventually areally 

mean p-valent functions are eampv. The converse is drastically false since eampv 

functions may have W(Ro) = oo while Spencer eampv functions necessarily have 

W(go) < ~ .  
A surface S over C is said to have locally finite area at a point w e C if there is 
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some neighborhood N of w such that the area of that part of the surface S which 

lies over N is finite. Thus while the image of ampo and Spencer eampv functions 

must be of locally finite area everywhere in the image domain, the image of 

eampo functions can fail to be of locally finite area everywhere inside the arbitrarily 

large compacta ]w] < Ro. 

Actually it appears that the notion of Spencer eampv functions is due to Little- 

wood [7]. At the conclusion of Spencer's first paper (submitted in 1938 but not 

published till 1941) Littlewood remarks that, due to the problems of communica- 

tion during the war, he not only had to referee the paper but also supply cor- 

rections himself. Hence he has added to Spencer's hypothesis the restriction that 

p > 1 (originally stated for p > 0) although he remarks that this could be removed 

if an additional constant is included and W(R) < pR  2 holds for R > R o. Spencer, 

apparently, was not convinced of Littlewood's addition, for in his sequel [11] 

(published after he had seen Littlewood's remark) he asserts that some of the 

results in his first paper (Th. 1 in particular) "require the full strength of W(R) 

< pR 2 for all R > 0". He does maintain, however, that the hypothesis W(R) 

< pR 2 for R > Ro > 0 is su~cient for the results of his second paper [11]. In any 

case, we will find that the proof can be generalized and simplified to the case of 

earnpv functions. 

3. Eventually areally mean p-valent functions 

The proofs presented in this paper follow very closely those given by Hayman 

[6] for ampv functions. This is quite surprising when one notes how heavily and 

how often Hayman's proofs rely on the fact that ampv functions have only a 

finite number of zeros and therefore, for t5 sufficiently small, there are no zeros in 

the annulus 1 - 6 < [z I < 1. In order that the results of this paper may be referred 

to in future papers that generalize some of Eke's work [4] on ampv functions and 

to emphasize the parallel with Hayman's proofs, I have adopted Hayman's 

notation and cite his theorems by number as they appear in [6]. 

We begin with the observation that if f (z) is eampv with respect to Ro, then for 

all R > Ro 

(3.1) 0 ~_ H*(R) ~_ - pR 2. 

Consequently, 

LEMMA 1. ([6, Lem. 2.1].) I f  f ( z )  is eampv in D with respect to Ro and 

R1, R z >_ Ro, then 
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th do > 1 I c g ~ -  
pp(p)  = p 

q 

PROOF. Exactly as in [6], we have 

R, dp > 1 log 2R~ + 
, p p ( p ) = p  p p 2R~ p , p3 j 

An application of (3.1) concludes the proof. 

The following theorem is a basic tool for eampv functions. Its proof is extremely 

simple in comparison to Hayman's proof, especially when one notes that we have 

removed all restrictions on the number of zeros of f(z).  

THEOREM 2. ([6, Th. 2.4].) Let f (z)  be analytic in D. Let 

po = max  {l f (z)  l: I z [ = tanh�88 

If pt = max{If(z)[: [z I = r} where r satisTes tanh �88 < r < 1, then for any 

P>-Po 

ff ' dp 1 + r 
pp(p------~ < 2 log I -- r + 2n. 

PRooF. Without loss of generality we may assume that 

p, -- max{[f(z)l:  Izl = r) 

is taken on at z = r, tanh �88 < r < 1. Let ~ = log[(l  + z)/(1 - z)] = a + it/and 

set g(~) = f [ ( e :  - 1)/(er + 1)3. Let  a t  = log[(1  + r)/(1 - r)].  Then I#(at)[ 

= If(r)l  = M ( , , f ) =  . t .  
Since I g(�89 = If  (tanh �88 < Po we may therefore conclude that for any 

~ = a +  0i, �89 -< a _< at ,  the function ] g(~)l takes on each value in [Po, Pt] at least 

once. For each p ~ [Po, Pt] let a be the first real number >= �89 such that [g(a) I = p. 

Consequently, 0 < �89 < a < a 1 and for each 0 < t < a we have 

I g(t)]  < max {]g(t)]: 0 _< t < �89189 < t < a) < max {Po, P} = P. 

Let R = {~ = a + it/:-�89 < a < �89 + at ,  It/I < �89 For each Pr Pt] let Cp 

be the level curve of 1o(o l  = p which goes through on which I0(r = , .  
If  we omit the countable number of p on which the level curve goes through a 

zero of 9 ' (0 ,  then we see that we can extend Cp either to the boundary of R in 

both directions or until C o intersects itself. In the first case we have l(p), the length 

of Cp, > re. In the second case, because 9'([) # 0 on Cp, we know that Cp is an 

analytic Jordan curve. In the interior of C o we have ] 9([) ] < P by the maximum 
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principle. However [g(C)] > p in a neighborhood of the exterior of  Cp. Con- 

sequently, since [ g(0 ] < P on [0, a], we must have this segment in the interior of  

Cp. Therefore the length of Cp must be > 2a > n. Therefore, for all but a countable 

set of p's in [Po, P~], we have l(p) > n. By Ahlfor's LengthArea theorem [6, p. 18] 

fp P' dp fpP' 12(p)dp n 2 < < 2n" n(a I + n) 
o PP(P)= o PP(P) = 

and therefore 

P' 1 + r n" ~ 
fpo PP(P)dP<= 2(log (FU__~_ r) + J 

from which (3.3) is obvious. (Compare to [8, Th. 1.4].) 

Our first application of Th. 2 is to generalize a theorem of Cartwright and 

Spencer for ampv functions. 

THEOREM 3. ([6, Th. 2.5].) I f  f (z) is eampv with respect to Ro, then 

M(r , f )  <= A(p,f ,  Ro)(1 - r)-2p for 0 __< r < 1 

where M ( r , f )  = max {If(z)]: [z[ = r}. 

PROOF. From Lemma 1 and Theorem 2 we have for R2 = M(r, f ) ,  R = 

M(tanh �88 R 1 = max(Ro, R) that 

1 log - < < 2 l o g  + 2 n ;  
~ = JR, P~P) - r 

hence, M(r , f )  < R122pexp(2n - �89 - 2 p  for tanh �88 < r  < 1. Consequently 

M(r , f )  <A( f ,  Ro, p)(1 - r) -2p for 0 < r < 1. 

Since the class is not a normal family we cannot hope to find a constant in 

Theorem 3 which is independent of the function. Note that, for fixed p, the family 

of all locally univalent eventually p-valent functions of the form f ( z )  = z + ... 

(which are analytic in D) does not form a normal family [2, Cor. 1]. 

The following is a key theorem for future papers on eampv functions (just as 

its Hayman parallel is key for so many ampv theorems). 

THEOREM 4. ([6, Th. 2.6].) Let f ( z )  be eampv in D with respect to R o. Let 

the k discs ]z - z n [ < r n (for 1 < n < k) be nonoverlappin# subsets of D. Let 
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: max {Ro, max max {lf(z.  + r .0i:  Icl -< _ tanh�88 . R1 
l~_n<=k 

I f  [f(z') I ->_ R2 > eR1 and 6n = (r, - [ z~, - z, I) /r, > O, then 

k 

(3.4) ]~ [log (2e"/6,]-1 < 2p/[log (R 2/Ri) - 1]. 
n=l  

PROOF. Although this proof follows the form of Hayman, we will prove the 

theorem in some detail to facilitate the reader's task and to permit abbreviation of 

the general procedure in the following proofs of Theorems 5, 6 and 7. 

Let D. be the disc ] z -  z . l <  r. and let p. (r )= p(R,D., f) .  Consider (k(0 

= f ( z .  + r.O. Then p . (R )=  p(R, I ( [ <  1, ~b(()). We choose ~. = ( z ' . - z . ) / r . .  

Then [ ~((.) I > R2 and by Theorem 2 we have 

or  

S r ~2 dp < < 2 l o g  +2re, 
R x PP,,(P) = ~R~ pp.(p) -1 

pp,,(p------~ _< 2 log . 

Using Schwarz inequality, we obtain 

[ 2~-1-'< = (":~(R)JR (3.5) ,,:~E log 6,,J = [ l o g R 2 / R ~ ]  2 JR, -R- " 

However, eventual mean p-valence implies 

i R~ p(R)dR _ plog R2 fR R2 h(R)dR 
1 R --R~I + , R 

R2 H*(R2) H*(R1) fa  I~ H*(R) dR 
(3.6) = plog ~-1 + 2R22 2R2 + , R3 

since - p R 2 <  I-I*(R)< 0 for all R > Ro. Therefore, using (3.5) and (3.6), we 

obtain our desired conclusion. 

DEFINITION. ([6, p. 34].) Let f (z)  be analytic in I z [ < 1. Suppose that for 

~ = exp(i0) there is a path ?(0) lying, except for its endpoint ~, in I zl < 1, and 

also a positive 6 such that 

liminf (1 - I  z I)~ Is(:) I  > o 
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as z ~ ( along ?(0). Then the order ~(0 o f f ( z )  at ( is defined to be the upper 

bound of  all such ~'s. If  no path ?(0) and positive ~ exist, we put ct(O = 0. 

THEOREM 5. ([.6, Th. 2.7].) I f  f (z) is eampv in D with respect to R o, then the set 

E of distinct points ~ on the boundary of D for which ~(0 > 0 is countable and 

satisj'es ~,r~(O <= 2p. 

PROOF. One possible proof follows [.6] where Theorem 4 replaces [.6, Th. 2.6]; 

we no longer have to worry about the zeros off(z) .  An interesting alternate proof 

uses a ploy one wishes would work more often. It is easy to show that for any 

e > 0 and any eampv function f(z),  one can find a complex number b such that 

g(z)= f ( z ) +  b has only a finite number of zeros and f (z)  is earn(p+ e)v with 

respect to R = R(p, Ro). (See Theorem 14.) One then applies [6, Th. 2.7] directly 

to g(z) (which has the same set E as does f(z)) to obtain ]~e ~(0) < 2(p + e). But 

8 is arbitrary and therefore ]~g ~(0)__< 2p. Unfortunately, this line of attack 

appears to fail for Theorems 3, 6, and 7 as well as for other interesting situations. 

The next theorem is the only real disappointment to our general theme; we 

conjecture that it is true without the restrictions on the number of  zeros of f (z ) .  

Nevertheless it is still a nontrivial generalization of Hayman's theorem since (i) it 

applies to functions which are not of locally finite area and (ii) the number of 

zeros at the origin can be arbitrarily large. 

THEOREM 6. ([.6, Th. 2.8].) Let f (z)  be campy in D with respect to R o and 

have only a finite number of zeros in D. I f  

lim sup (1 - r)2PM(r,f) = ~ > 0, 
r " * l  

then there exists a 0 o (0 _-< 0 o _~ 2~) such that 

O~ 

~o = lim inf(1 - r )  2p ]f(rexp(iOo))[>= A(f, Ro------) > O. (3.7) 

PROOF. Identical to [.6, Lem. 2.4] and [,emma 1. 

Eke [4] has recently shown for ampv functions that the existence of  

lim sup (1 - r) zp M(r , f )= ~ > 0 implies the existence of a unique 0 such that 

lim,_. 1 (1 - r) 2p ]f(rcxp(iO)) I = ~. The reader is referred to his beautiful paper 

with the forewarning that his results require considerable analytic machinery. 

From Theorem 5 it is clear that there is at most one point 0o for which (3.7) can 

hold. Therefore whenever such a 0o exists we have the following theorem. 
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THEOREM 7. ([6, Th. 2.9].) Let f ( z )  be eampv in D with respect to R o. IJ 

there is a 0 o e [0, 2~z) such that 

lira inf(1 - r) 2~ [f(rexp (i0o)) I > o 

then for  any ~, 0 < ~ < 2p, we can f ind a positive constant C and an r o such that 

(3.8) [f(rexp(iO)) I < (1 - r)- '[  0 - 0o I ' - 2 '  

for  all r, r o < r < 1, C(1 - r) < 1 0 -  0 ol __6 r~. 

Furthermore, we have uniformly as r ~ 1 wh.le s < [0 - Oo [ ~_ n 

(3.9) loglf(rexp(iO)) I < O logi--L-- ~ . 

PROOF. Let ~o = l imin f , - . l (1 -r ) -2~] f ( rexp( iOo))[  >0 .  Then there is a 

t5 > 0 such that 

(3.10) ]f(rexp(iOo))] >= �89 - r) -2p > R o 

for all r , l - t S < r < l .  Let z I = (1- tS)cxp( i0o) ,  z2 = ( 1 - d i ) e x p ( i 0 ) ,  and 

assume that 4,~_~ Io-0o I =<~. The discs l z -  zl l  < 6  and I z -  z2l < 6  are, of 

course, disjoint subsets of D. 

We wish to apply Theorem 4 to the discs I z - z t { < c5, I z - z 2 [ < 6. There- 

fore, since If(zx) l > Ro, the value of RI in Theorem 4 is 

R* = max max I f ( z j + 8 o l .  
j = l , 2  

I~1_~ tanhtg 

A quick glance at the proof of Theorem 4 will convince the reader that the 

conclusion still holds if we also demand that R 1 = max[R~, M ( 1 -  6,f)].  

Clearly by Theorem 3, R~ < A(p ,R , f )  (tanh �88 -2p 3 -2p . 

Suppose that 

(3.11) [f(r2exp(iO) I = R2 > eRr 

where 1 - t5 < r2 < 1. Let z~ = r2 exp (iO) and choose z~ = rt exp (iO0) such that 

rt is the smallest number for which If(z~)I=[f(r, exp(iOo)[ = R~. Such a 

number exists by (3.10) and (3.11). Of course rt > 1 - t5 from the definition of R1. 

We now apply Theorem 4 with 

- [ r 1 - ( 1 - 6 ) ]  l - r 1  1 - r ~  ~ 1 =  ~ = - ' T - - '  ~2 = - - - ~  - - '  

and obtain 
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[ l og (  2e~ ~] -1 =< 2p -- /I- - - / 2 e ~ J  ] - t  (3.12) - rl'J log(R2/R )- 1 L l ~  

By (3.10), R2 > � 8 9  rl) -2p and by Theorem 3, as previously remarked, 

R1 < A(p,f,  Ro) 6-  2p. Therefore R2/RI > CI[6/(1 - r0 ]  2p, where C1 is a constant 

depending on f, p, and Ro. The remainder of the proof is now identical to [6] and 

is omitted. 

As Hayman states, condition (3.9) is a good deal stronger than the condition 

that ~t(() = 0 for all exp (iO) ~ exp (iOo). 

The next series of theorems concentrate on the rate of  growth of eampv func- 

tions which have one of three characteristics: some form of symmetry, gaps in 

the power series development, or some control of  growth of  the coefficients on an 

arithmetic sequence of coe~cients. The key is the following technical result. 

THEOREM 8. ([6, Th. 3.7].) Suppose that f ( z )  is eampv in D with respect to 
t t Ro. I f  for  all r s'zO~ciently close to one, there exist k > 2 points Zl, z'2, ..., Zk on 

I z] = r such that 

(i) [ z; - zj I > 6 (for 1 < i < j < k, where 6 is independent of  r) and 

(ii) If(z;)] >- R (for 1 <_ i < k), 

then 

(3.13) R < A(p, f ,  Ro) 62Ptllk-1)(1 -- r) -2p/k. 

PROOF. We may suppose that 

(3.14) 6 > 4"+2(I - r) 

for if this is not the case then, by Theorem 3, 

R < M (r , f )  < a (p,f, Ro) (1 - r)-2p 

< A (p,f, Ro) (1 - r)-2P/k(4 p+z/6) 2p-2p/k 

< A(p, f, Ro)(1 - r)-2plk62(p/k)-2P , 

which concludes the proof of Theorem 8 in this case. Therefore, letting 

r 1 = 1 - ~6 = 1 - 60 and noting ~-6 = 60 > 4P+z~(1 - r )  __> 2(1 - r ) ,  we conclude 
I that r a < r. Let Zy = rexp(iOj)(1 <=j ~_ k) and define zj -- rx exp(i0j) (1 < j  < k). 

By construction, the disc [z - zj] < 60 contains the paint zj and has diamzter 

26o = k6, which, because of  hypothesis (i), implies that the discs l z -  zjl  

< 6  o (1 < j < k )  are nonoverlapping. Now let R 2 - - R  and R 1 - -max{Ro,  

max {If(z)[: [z[ = rl + 60 tanh �88 }}. We let r z = r I + 60 tanh�88 and nate that 
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r 2 = 1 -- 16 (1 -- tanh �88 = 1 -  .0434 6. Thus r 2 is independent of r and strictly 

less than one. Consequently, for r sufficiently close to one, r 2 < r < 1. Finally, 

we may suppose that R2 > eR1 since otherwise the conclusion is obvious (Rt 

is independent of r). 

Thus if we set 

(60- Iz;- zjl) ( l -r )  
tSj = ~o = ~o for l ~ _ j < k ,  

we may apply Theorem 4 (with an obvious modification) and obtain 

[ ' 
k log ~ __< 2p[log(R2/eR~)] -~, hence 

(3.15) R2 ~ 2en60~2p/k ~ (~ ~2p/k 
eg---( < \1 - r] < A(p) ~-~-S~_ r ] , 

since 60 = {6. However rl = 1 - 60 and an application of Theorem 3 yields 

(3.16) R l = M ( r , f )  < A(p,f ,  Ro)6o 2p = A(p,f ,  go)6-EP. 

Theorem 8 follows from (3.15) and (3.16) upon writing R instead of R2. 

If  an campy function eventually shows a form of k-fold symmetry then, as in 

the case for ampv functions, the growth of M(r , f )  is severely restricted. 

THEOREM 9. ([6, Th. 3.8].) Suppose that 

N - 1  

f(z) = ~, ajT. J "Jr" ~ aN+jk zN+jk 
j =o j =o 

is eampv in D with respect to Ro. Then 

M(r,f)  < A (p, k, N,f ,  Ro) (1 - r)- 2p/~ for 0 < r < 1. 

PROOF. The proof follows that of ]6, Th. 3.8] where we replace [6, Th. 3.7] by 

Theorem 8 and note that 

N - - I  

I • aJzJI < A ( N , f )  
j=O 

for all [ z[ < 1, where A(N, f )  is a constant depending only on N and f. 

I f  an eampv function only has coefficient gaps we can still make some strong 

assertions. 

THEOREM 10. ([6, Th. 3.9].) Suppose that f (z)  = ~n~=o an z~ is eampv in D 

with respect to Ro. I f  an = 0 whenever n = b m  + c, where b and c are fixed 

positive integers and m goes from 1 to oo, then 
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M(r, f )  < A(p, b, c,f, Ro) (1 - r) -p for 0 < r < 1. 

PROOF. The proof follows that of 1-6, Th. 3.9] with the stronger Theorem 8 

replacing [6, Th. 3.7] of Hayman. 

We now generalize a theorem due to Goluzin [5, p. 190] for which, when p is 

greater than or equal to one, Theorem 10 is but a special case with ct = p - 1. 

THEOREM 11. Let f ( z )  = ~ = o a , z  n be eampv in D with respect to Ro. Let b 

and c be positive integers with 1 ~ c < b. Suppose that there is a positive integer 

N such that for all integers n = bm + c, with m an integer > N, we have 

]an] Z Cn" where ~ > max {p - 1, 0}. Then 

M(r , f )  < A(p, b,f, N, Ro) (i - r) -(~+ 1). 

We shall see that the restriction ~ > max {p - 1, 0} is necessary and cannot be 

removed for any p > 1. A discussion of this is presented at the end of the paper. 

PROOF. We begin by writing g( z )=  Y~,-o 1 anz", h ( z )=  T~,~=N a,z" and let 

h~(z) ~.~=o abm+v zbm+v (0 <-- V <-- b 1). Then h(z) b-I = -- = ~ = 0  h~(z). Moreover, 

Ih (z)l _-< <= c r  c (bm + c) ~rb" 
m = O  m = O  

co 

<= b'C r Z (m + l)~(rb)" 
m = O  

) < Cb~r 1 + m~(r~)m 
0 

from which, as is well known I-5, p. 1911, it follows that 

(3.17) I he(z) [ _~ A(~, b, c, C) (1 - r) -(1 +~. 

Now select and fix an arbitrary z of modulus r for 0 < r < 1. Consider the 

maximum of [f(z exp (2rcij/b))] such that 0 __< j_~ b - 1. Without loss ofgenerality, 

we may assume that the maximum term occurs for j  =0.  Then applying Theorem 8 

to If(z) I and ] f ( z  exp (2nij/b)) 1, we have for each j = 1,..., b - 1, 

] f (z exp (2rcij/b)) I < A (p,f, Ro) [ 1 - exp (2r~ij/b) ]-'[( l - r ) - ' .  

In particular, 

[f(z  exp (2rcij/b)) [ < A (p,f, R o, b) (1 - r) -p j = 1,..-, b - 1. 

But, 
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b - I  

f ( z  exp (2nij /b)) = g(z exp (2nij /b)) + ~, exp (21rijv/b)h~(z). 
v=O 

Therefore ,  we have for all j = 1, . . . ,  b - 1, 

b - 1  

I o(zexp(2nij/b)) + E exp(Ercij/b) h~(z) l < A(p, Ro, b) (1 - r) -p 
v = 0  

f rom which we deduce for j -- 1, . . . ,  b - 1 

b - 1  

I~=o exp(Ercijv/b)hv(z) l < A(P'f'b'R~ ( 1 -  r)-P" 

Let w ~ c be an integer satisfying 0 _ w _ b - 1. I f  we consider the b - 1 

equations 
b - 1  

1 < IAJlA(p,f,b, Ro, S) (1- , ) - ' ,  

where j = 1, ..., b - 1, and add them, we obtain 

A~exp(2~ikvlb) ho(z) < IA, I A(p,f,b, Ro, N)(1-r)- ' .  
v : 0  , , k = l  \ j = l  

However,  we can always solve the system of  equations 

b - 1  

(3.19) • Akexp(2rcikv/b) = 6~w, 0 < v < b - 1, v ~ c, 
k = l  

since the minors of  the b by b Vandermonde  determinant  created from the numbers 

exp(2rcik/b) (k = 1, ..., b) are all nonzero (see I5, pp. 190-2]). Consequently 

f rom (3.18) and (3.19) we can always write 

(3.20) 
/ b - !  \ 

In particular,  f rom (3.17), (3.20) and the fact that  e > max {0, p -  1}, we obtain 

for  any w r r 0 _< w -< b - 1 that  

(3.21) I hw(~) I < A(p,f, N, b, Ro) (1 - r)- t~+ 1 ) .  

Therefore,  using (3.17) and (3.21), we have 

b - 1  

ly(z)l Ig(z)l+ h~ 
v 0 

< A( f ,S)  + A ( p , f , N , b ,  Ro) (1 - r) -(~§ 

< A(p,f,N,b, Ro) (1 - r) -(~+t). 
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Since z was arbitrary on tel = r we have M(r , f )  < A(p,f, N, b, Ro) (1 - r ) - t~+ t) 

and the proof is complete. 

4, Coefficient estimates of eampv functions 

We now present the Hardy-Spencer-Stein machinery for eampv functions. 

As in [6] we let 

S (r,i) =r  /2- Jo If(r~ ) 
and 

1 s 
p(r, R) = p(r, R, f )  = ~ n(r, R exp (i~k))d~k 

where n(r, R exp (i0)) denotes the number of roots of f (z)  = R exp (i0) in ] z I < r. 

THEOI~M 12. ([6, Th. 3.2].) Let f (z)  be eampv in D with respect to R o. 

Suppose that there is an R 1 > 0 such that for all R, 0 < R <_ R1, we have 

W(R) <= qR 2. Let A = max(2,�89 for 2 > 0 and A* = �89 ~-2 if  2 > 2; A* 

=�89 -z / f 0 < 2 < 2 .  Then 

S~(r,f) <= pAM~(r,f) + qAR~t + A* A(r, Ro) (4.1) 

and 

f,'/ } (4.2) Iz(r,f) <= M*(ro,f) + pAMX(r'f) + qAR~ + A*A(r, R~ dr 
o r 

for 0 < r o < r < 1 where A(r, Ro) denotes the surface area of f([ z [ <= r) over 

Iwl _Ro 
PROOF. From the Hardy-Spencer-Stein identity for an arbitrary analytic 

function in D we have [6, p. 42] 

(4.3) 

fO ~ 2 ~M(r,f) Sx(r,f ) = ,~2 p(r,R)RX-ldR = 2 Jo P(r 'R)RZ-tdR 

for all r, 0 < r < 1. We now estimate each of the three integrals separately. 

Sincef(z)isinitiallyamqvfor 0 < R < R1, then exactly as in the proof of [6, 

Theorem 3.2], we can conclude that 

fo R' (4.4) p(r, R)R ~- ldR < qAR~ 

{s r.<,,} = 22 + + p(r,R)R~-ldR 
i d R o  
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for all r, 0 < r < 1. 

Next we note that if Ro > R1 

Ro ~ - 1dR �89 fele~ ~ _ 22p( r , R) RdR a~ p(r, R)R = 

(4.5) < A* (r, R) d(R 2) 

fo R~ <_ A* p(r,R)d(R2). 
This last integral is the area of the image o f f (  I z I < r) (considered as a surface) 

lying over I wl < Ro. 
If r is such that M(r,f)  < Ro, then I ~  (''~) p(r, R) R ~- 1dR <= 0 and S~(r,f) 

< qAR~ + A*A(r, Ro) which is trivially less than or equal to pAM~(r,f) + qAR~ 

+ A*A(r, Ro) as claimed in (4.1). 

We therefore proceed to evaluate the remaining integral under the assumption 

that M(r,f)  > Ro. Setting 

fR~p(r,p ) d(p2) = W*(r,R) 

and M = M(r,f)  we obtain 

dR=�89 x-z d W*(r,R)  
d Ro - ~  

= �89 R ~-  2 W*(r. R) Ro + ./,o R ~- 3 W*(r. R) dR. 

The fact that f (z)  is eampv implies for all R > R o 

pR 2 > W*(1, R) > W*(r, R) > W*(r, Ro) = O. 

Hence, if ,1. > 2 

R~p(r,R)R~-ldR < �89 

< �89 2 = �89 

while if 0 < ;t < 2, then 

f; 2-2fR~R~-3pR2dR p(r,R)RX-ldR < �89 2 + --~--- 
o 

< �89 Ma + p ( 2 ~  2)MX = p Ma(r,f). 
/ ,  
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Thus in both cases we obtain j'~oP(r, R)Ra- ldR <= pAM~(r,f). Combining these 

three estimates we obtain (4.1). Clearly, for any r, 0 < r o < r < 1 we have 

Ix(r,f) = Ix(ro,f) + f "  S~(t,f) dt 
rl  t 

<= M~(ro,f) + 
l r 

as claimed in (4.2). This completes the proof of the theorem. 

We now establish a technical lemma which is necessary to relate M(r,f)  to 

coefficient growth. 

Lv_Ms~ 13. ([6, Lem. 3.1].) Suppose 0 < 2 <_ 2 and f (z) satisfies the conditions 
of  Theorem 12. I f  -~ < r < 1, then there is a p such that 2r - 1 <_ p <= r and 

2-~ ]f'(pexp(iO))12 ]f (pexp(iO))lX-2dO 
(4.6) 

4 Ma(r,f) + q R x 1 . Ro) <= l----~r -~ i + - - ~  A ( r, . 

PROOF. From the Hardy-Spencer-Stein equality we have 

'fo 2-~ p dp f ' (p  exp (iO)) 12 [f(p exp (iO))I ~ - 2dO = 2- 2Sx(r,f) 

and thus by Theorem 12 

':: fo" - -  pdp If'(pexp(iO))I21f(pexpiO))I~-2dO 
21~ r -  I 

-~ q ~ R X1- 2 
< MX(r,f) + --~ RI + A(r, Ro) 

for 0 < r < l .  By the mean value theorem for integrals there exists a p such that 

2 r -  l < p < r and 

' f:i 2-~ f '(pexp(iO) ]2] f(pexp(iO))l"-2dO 

l [_~Ma(r,f) q x R~ -2 ] 
--< (1 r)-----p + 2  -RI + -22 -T" "A(r'R~ 

4 [_~ q x RX-2 .A(r, Ro)]. 
< Ma(r,f) + --~R~ + 22 z = ( 1  r) 

The last inequality follows since �88 < 2r - 1 < p. 
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TIaEO~M 14. ([6, Th. 3.3].) Let f (z)  = Y~'=oanz" be eampv in D with respect 

to Ro. I f  

(4.7) M(r,f)  < C(I - r) -~ 

for 0 < r < 1 where C > 0 and a > �89 and if 

(4.8) A(r, Ro) = C'(I - r) -r  

where C' > 0 and ~ > O, then 

laol _-__ A(C,C',Ro,f,p,a,r)n ~'-' 

where 

tO = +�89188 g ~ - � 8 9  

~ 0 ~ - � 8 9  

PROOF. We begin by showing there is a complex number c such that f (z)  + c 

is initially amqv for some finite q. Let A(c, R)denote the surface area of f(D) 

lying over the open disc ]w - c] < R. If there is a complex number c such that 

A(c, R) 
(4.9) lim sup R--- T -  < oo 

R--,O 

then the function f (z)  + c will be initially amqv for some q < oo (that is, there 

will be an Rl > 0 such that W(R,f(z) + c) < qR 2 for all 0 < R < RI). If  (4.9) were 

false for a l l ]c  1> Ro, then for every point c, ]c 1> Ro, we can find an open disc 

centered at c of radius R, R < Ro, for which A(c, R) >= 3n pR 2, that is A(c, R)/30p 

>_ 7t R 2. This creates an open covering for the compact annulus 2Ro < ] w [ < 3Ro. 

There is therefore a finite subcover of this annulus and this subcover lies in the 

annulus Ro -< [ w [ < 4Ro. By the Vitali covering theorem, we may choose a finite 

subcoUection of this finite subcover consisting of mutually disjoint discs I w-e l 
< R~ whose collective area, ~ nR 2, is at least 5~ R2o/9 (where 5u R g is the area of  

the annulus 2R o 3Ro). Since the surface area of f(D) over the disc 

I w - ck I < Rk satisfies A(Ck, R)/30p > n R 2, we see that the area of  the surface 

over this finite disjoint collection of discs is at least 150~rpR2o/9. On the other 

hand, since the discs are disjoint and contained in Ro -< [ w[ < 4Ro, the assumption 

that f (z)  is eampv with respect to Ro implies that the surface area over these discs 

can be at most l&rpR2o = 144rcpR2o/9. This contradiction shows that there is a 

]c ] > 2Ro such that f (z )  + c is initially amqv. 
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It  is easy to check that  if f (z) is campy with respect to Ro, then for any c e C 

and any 8 > 0, there is an R1 = RI(Ro, e, c) for  which the function f (z)  + c is 

eam(p + e)v with respect to RI. I f  f (z) is eampv and A(r, Ro) < C'(1 - r) -~, it is 

easy to verify that  A(r, Rt, f (z  ) + c) <= C'(Ro, p, c) (1 - r) -~. Finally, if c e C and 

M(r,f) < C(1 - r) -~ then M(r,f(z) + c) <= (C + I c I) (1 - r) -~. 

Since the coefficient estimates f o r f ( z )  and g(z) = f (z)  + c are the same, we will 

concentrate on g(z) where (i) g(z) is initially amqv for  0 < R =< Rt, q < o% 

(ii) g(z) is eam(p + 1)v for R~ = Ro(Ro,f), (iii) M(r, g) < C(C,f) (1 - r) -~, and 

(iv) A(r,R~,g) < C'(C',Ro,f,p)(1 - r)-'. 
We now suppose that r > ~, and a > �89 Let ). = (22 - 1)/2a so that  a ( 2 - 2 ) >  1 

and choose p so that  (4.6) holds. Then 

(4.1o) = g ' ( p e x p ( i O ) ) l d O  

[ g(p exp (iO))] 4- 2dO 

by Schwarz 's  inequality. Letting ro = -~ in (4.2) and noting that r > -~, r > p, we 

deduce 

I2-x(P, g) ---< 12-~(r, g) 

Io < (C+]cl)(1-ro) + t___ {(p+l)AM2-X(r,g) + qAR~-X+ A*A(r,g)}dr 
= r o 

<= A(C, C', p, a, Ro, f, V) (1 - -  r )  - a ( 2 - D  -t- (1 - r)-r}dr 

<__ A(C, C',p,a,V, Ro,f) (1 - r) -~'+' 

where p = max(v ,  a + �89 By Lemma 13 

{ ~---~ fo2~lg'(pexp(iO))12lg(pexp(iO))l~-2dO} ~ 

=< (1 - r) -~A(C, C',p,o~,V, Ro,f)(1 - r) -,/2 

where v = max(v,  c~ - �89 (Note that we rely on the fact that RI,  q, and c depend 

only on f .)  Now if we write r t  = 2r - I so that r~ =< p < r, then we may deduce 

f rom (4.6), (4.10), and the aboveSthat 

11(rl, g') <= ll(p, g') <- A(C, C', p, a, V, Ro , f )  (1 - r) - l t "+ vl. 
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The conclusion follows with the observation that 

and the fact that 

/ t + v  = ~ 2V i f = + � 8 9  t 
~ + � 8 9  i f=- �89189 

2a i f O < y 6 ~ - � 8 9  

la . l  --<  -I1 . f  . 

A beautiful result of univalent function theory concerns the rate of growth of 

M(r,f) and the rate of growth of the coefficients off(z). It is well known that for 

functions f ( z ) =  ~.a,z" which are ampv (hence for all p-valent functions in 

particular), if ~ >�89 then M(r, f)= 0 ( 1 -  r) -~ implies ]a,] = O(n~-l). The 

breakdown at �9 = �89 is not because of a limitation in the method of proof. (Indeed 

Littlewood [7"] has given an example of a bomaded univalent function for which 

]a.] > for some positive a for infinitely many n.) One may ask for 

which classes is it true that the estimate M(r~f)= O ( 1 -  r) -~ implies l a.I 
= O (n ' -  t) for various restrictions on ~. Clunie and Pommerenke I3] have shown 

that for close-to-convex functions one may let ~ >= 0. This was extended in my 

dissertation [1] to a large class of locally univalent functions which contain as 

subclasses the close-to-convex functions and the functions of bounded boundary 

rotation (I,'~. Now I wiU show that under various additional restrictions on either 

f(z) or on ~ a similar phenomenon can occur for earnpo functions. Let us briefly 

summarize a particular function class. 

Pommerenke 1-81 introduced and investigated an extremely important and 

natural generalization of the normalized tmivalent functions, namely the classes 

H~, fl > 1. A function is in H B if and only if 

sup I - + �89 -Izl~f"(=)/s'(z)] 
z E D  

We let X = U {H~:/~ ~ 1} be the set of all locally amivalent analytic functions of 

finite order. All functions in ~ (the locally naivale, nt functions which are globally 

at most/r-valem), the functions in V~ (bounded boundary rotation), the functions 

of bounded argument (sup I argf'(z) I < oo), all of these and many other classical 

g~omotric function theory classes can be dealt with ha a systematic manner by the 

general theory of locally univalent ftmctions of finite order developed by Pom- 

merenke, Clearly functions in H~ satisfy 
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Re(1 + z f"(z) / f ' ( z ) )  ~_ (1 - 2fir + r2)/( l  - r2). 

It is well known that if p is a positive integer and 

Re (1 + zf"(z) / f ' (z) )  > - �89 

for Izl  < r, then f ( z ) i s  at most p-valent in [z I < r. Consequently, if f ( z )  ~lIl~, 

then for r close to one we see that f ( z )  is at most 4fl/(1 - r)-valent in I zl < r. 

Thus the area of  f ( [ z [ <  r) over any disc of  radius Ro is no more than 

4flnR2o/(1 - r). In particular, if f ( z )  e ~[a, A(r,f ,  Ro) <_ 4flrrgoZ(1 - r ) -  1. 

The theorems that remain to be stated result f rom immediate application of  

Theorem 14, from M(r , f )  restrictions which were deduced in Section 3, and 

from application of  the fact that A(r, Ro) = O(1 - 0 -1 f o r f e X .  

THEOREM 15. ([6, Th. 3.5].) Let f ( z )  be eampv in D with respect to R o. I f  

A(r, Ro) = O(1 - r) -~, 0 < y __< 2p - �89 (p > �88 then l a,  I = O(n2P-1)" 

THEOREM 16. ([6, Th. 3.3].) I f  f (z) ~ X is eampv in O with respect to Ro, then 

M(r , f )  = O(1 - r) -~ implies [anl = O(n~-l)  for all ~t > 3. 

COROLLARY 17. I f  f ( z )  ~ X is eamlv in D with respect to Ro, then l an I=O(n) .  

TaEOREM 18. ([6, Th. 3.8].) I f  

N - 1  

f ( z )  = • a j z  j + a s z  s + aN+k zN+k + aS+2k zs+2k + ... 
j = 0  

is eampv in D with respect to Ro and A(r, Ro) = 0 (1  - r) -~, 0 < ~ ~ 2p /k - �89 

t < k ~ 4p, then Jan [ = 0 (n 2v/k- 1). 

COROLL~Y 19. I f  

N - I  

f ( z ) =  ~ ajz j + ~ aN+j~z N+jk 
j=O J=O 

is eampv in D with respect to R o and if f e X ,  then[ a n l < O ( n  2"/~-' ) f o r  

l<_k<_~p.  

THEOREM 20. ([6, Th. 3.9].) Let f ( z )  = ~anz n be eampv in D with respect 

to R o. Suppose a n = 0 whenever n = bm + c where b and c are f ixed positive 

integers and m goes f rom one to infinity. I f  A(r, Ro) = O(1 - r) -~, 0 _~ ), _-< p - � 8 9  

then ]a~[ = O(nP-l).  

In particular if f ( z ) i s  eamlv with coefficients that vanish on an arithmetic 

sequence, then even if A(r,Ro) grows as 0 (1 - r ) - ~ ,  the coefficients o f  f ( z )  are 

still bounded.  
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COROLLARY 21. I f  f ( z ) e  X satisfies the conditions of Theorem 20, then 

[a,I = O(nP-1) for all p~_3/2. 

THEOREM 22. ([5, p. 190].) Let f ( z )  = Y~a,z" be eampv in D with respect to 

Ro. Let b and c be positive integers with 1 <_ c <- b. Suppose there is a positive 

integer N such that for all integers n = b m  + c, with m an integer greater than 

or equal to N, we have l a, I <= C n ~ where ~ ~_ m a x { p - 1 , 0 } .  I f  A(r,R) 

= O(1 - r) -~, 0_<_ y =< ~ + �89 then [a,] ___< A(C,p,b ,c , f ,  Ro)n~for all n. 

COROLLARY 23. Suppose f ( z )  ~ X is campy in D with respect to R o. Let b and c 

be positive integers with 1 <_ c <_ b. I f  there is a positive integer N such that 

for all integers n = b m +  c, with m an integer greater than or equal to 

N, we have la,] = O(n ~) where g > _ m a x ( p - l , � 8 9  then ]a,I = O(n ~) for 

all n. 

We make three concluding remarks. First, Spencer's eampv functions (campy 

and locally finite area) trivially satisfy A(r, Ro) <- C (1 - r)-~ with ? = 0. Therefore 

the previous theorems hold immediately for such a class of functions. 

Second, since for any campy function of locally finite area there is a complex 

number c such that g(z) = f ( z )  + c is (globally) amqv for some finite q, we see 

that all of  the theorems of Pommerenke's paper [9] can be generalized from the 

class 9~ (the class of all amqv functions) to 9.I* (the class of all eampv functions of  

locally finite area). We also take this opportunity to point out that one of his 

theorems [9, Th. 3] still holds true under the much weaker condition that f ( z )  

have only weak mean p-valence ['10, p. 201]. Here is a statement of [9, Th. 3]. If  

f ( z )  = a o + ]E~= 1 a.~z "k satisfies ~,n~ll /nk < o9 and f ( z )  is amqv, then 

Third and finally, we note that the restriction ~ > m a x ( p -  1,0) cannot be 

removed from Theorem 11 or Theorem 22 for any p > 1. That is, for any p >___ 1 

and any ~ satisfying - oo < ~ < max(p - 1,0), there is an eampv function which 

does satisfy [a.  I < C n" on some sequence n = bm + c, but for which M(r , f )  

# O ( 1 - r )  -c~+1~ and also for which [a. I # O(n~). Consider the functions 

f ( z )  = ( l + z 2 )  -p = l + a  2z 2 + a,,z 6 + . . .  a n d f ( z )  ~ = g(w) = ( l + w )  -p 

= 1 + a2w + a4w 2 + a6w 3 + .. . .  A direct computation shows a2. ~ nP-I[F(p), 

a2,+1 = 0. Hence for any ~ less than p - 1, we have la, I =< 1 �9 n ~ for all even n. 

But, as is evident, M(r, f )  is not 0(1 - r) -r nor is l a, I = O(n'). It is an open 

question whether the restriction is necessary if p < 1. 



236 D.M.  CAMPBELL Isred I. Malh., 

Rs 

1. D. M. Campbell, B-close.to-linear invariant families, Dissertation, University of North 
Carolina, 1971. 

2. D. M. Campbell, Eventually p-valent functions, Scripta Math., to appear. 
3. J. Clunie and Ch. Pommerenke, On the .coefficients o f  close-to-convex univalent f~ctionx, 

J. London. Math. Soc. 41 (1966), 161-165. 
4. B. G. Eke, The asymptotic behavior ofareally mean valent functions, J. Analyse Math. 20 

(1967), 147-212. 
5. G. M. Goluzin, Geometric theory of  functions of  a complex ~r GITTL, Moscow, 

1952; [English Translation, Transl. Math. Monographs, Vol. 26, Amer. Math. Soc., Providence, 
R. I., 1969.] 

6. W. K. Hayman, Multivalent functions, Cambridge University Press, 1958. 
7. J. E. Littlewood, On the coefficients of  Schlicht functions, Quart. J. Math. Oxford Ser. 9 

(1938), 14-20. 
8. Ch. Pommerenke, Line~-invariunte Familien analytischer Funktionen, 1, Math. Ann. 155 

(1964), 108-154. 
9. Ch. Pommerenke, Ober die Mittelwerte und koeffizienten multivalenter Funktionen, Math, 

Ann, 145 (285-296), 1962. 
I0. D. C. Spencer, Onfinitely mean valentfunctions, Proc. London Math. Soc. (2) 46 (1941), 

201-21. 
11. D. C. Spencer, On finitely mean valent funclions II, Trans, Amer. Math. Soc. 45 (1940}, 

418-435. 

BR~OF.~ YOUNG U ~  
PROVO, UTAH, U. S. A. 


